On Bivariate Fundamental Polynomials
نویسندگان
چکیده
منابع مشابه
Bivariate affine Gončarov polynomials
Bivariate Gončarov polynomials are a basis of the solutions of the bivariate Gončarov Interpolation Problem in numerical analysis. A sequence of bivariate Gončarov polynomials is determined by a set of nodes Z = {(xi,j, yi,j) ∈ R2} and is an affine sequence if Z is an affine transformation of the lattice grid N2, i.e., (xi,j, yi,j) = A(i, j)T + (c1, c2) for some 2 × 2 matrix A and constants c1,...
متن کاملGeneralized Bivariate Fibonacci Polynomials
We define generalized bivariate polynomials, from which specifying initial conditions the bivariate Fibonacci and Lucas polynomials are obtained. Using essentially a matrix approach we derive identities and inequalities that in most cases generalize known results. 1 Antefacts The generalized bivariate Fibonacci polynomial may be defined as Hn(x, y) = xHn−1(x, y) + yHn−2(x, y), H0(x, y) = a0, H1...
متن کاملOn Bivariate Complex Fibonacci and Lucas Polynomials
In this study we define and study the Bivariate Complex Fibonacci and Bivariate Complex Lucas Polynomials. We give generating function, Binet formula, explicit formula and partial derivation of these polynomials. By defining these bivariate polynomials for special cases Fn(x, 1) is the complex Fibonacci polynomials and Fn(1, 1) is the complex Fibonacci numbers. Finally in the last section we gi...
متن کاملOn zero curves of bivariate polynomials
With the emergence of algebraic curves and surfaces in geometric modelling [2,4,6,11,12, 21,22] it is important to be able to predict how many connected components the zero set of a multivariate function has in terms of its coefficients. It would be especially useful to find a condition which ensures that the zero set is a single curve or surface. For univariate polynomials Descartes’ Rule of S...
متن کاملThe Bivariate Rogers-Szegö Polynomials
We obtain Mehler’s formula and the Rogers formula for the continuous big qHermite polynomials Hn(x; a|q). Instead of working with the polynomials Hn(x; a|q) directly, we consider the equivalent forms in terms of the bivariate Rogers-Szegö polynomials hn(x, y|q) recently introduced by Chen, Fu and Zhang. It turns out that Mehler’s formula for Hn(x; a|q) involves a 3φ2 sum, and the Rogers formula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: British Journal of Mathematics & Computer Science
سال: 2015
ISSN: 2231-0851
DOI: 10.9734/bjmcs/2015/18816