On Besov spaces of logarithmic smoothness and Lipschitz spaces
نویسندگان
چکیده
منابع مشابه
Sharp Embeddings of Besov Spaces with Logarithmic Smoothness
We prove sharp embeddings of Besov spaces B p,r (R ) with the classical smoothness σ and a logarithmic smoothness α into Lorentz-Zygmund spaces. Our results extend those with α = 0, which have been proved by D. E. Edmunds and H. Triebel. On page 88 of their paper (Math. Nachr. 207 (1999), 79–92) they have written: “Nevertheless a direct proof, avoiding the machinery of function spaces, would be...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولSemilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains
Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type ∆u − N(x, u) = F (x), equipped with Dirichlet and Neumann boundary conditions.
متن کاملApproximation and entropy numbers in Besov spaces of generalized smoothness
Let X and Y be Banach (or quasi-Banach) spaces and let T ∈ L(X,Y ) be a compact operator. In order to measure “the degree of compactness of T” one can use the asymptotic decay of the sequence of approximation numbers of T or the decay of the sequence of entropy numbers of T. In general, the behaviour of these sequences is quite different. However, as we shall show, under certain assumptions the...
متن کاملSome results on Gaussian Besov-Lipschitz spaces and Gaussian Triebel-Lizorkin spaces
In this paper we consider the Gaussian Besov-Lipschitz B α p,q (γ d) and Gaussian Triebel-Lizorkin F α p,q (γ d) spaces, for any α > 0, studying the inclusion relations among them, proving that the Gaussian Sobolev spaces L p α (γ d) are contained in them, giving some interpolation results and studying the continuity properties of the Ornstein-Uhlenbeck semigroup, the Poisson-Hermite semigroup ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2015
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.12.034