On analytic functions regular in the half-plane (I)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian integer points of analytic functions in a half - plane

A classical result of Pólya states that 2 is the slowest growing transcendental entire function taking integer values on the non-negative integers. Langley generalised this result to show that 2 is the slowest growing transcendental function in the closed right halfplane Ω = {z ∈ C : <(z) ≥ 0} taking integer values on the non-negative integers. Let E be a subset of the Gaussian integers in the ...

متن کامل

Integer points of analytic functions in a half-plane

It is shown that if f is an analytic function of sufficiently small exponential type in the right half-plane, which takes integer values on a subset of the positive integers having positive lower density, then f is a polynomial. MSC2000: 30D20, 30D35.

متن کامل

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

متن کامل

Revisiting the Siegel Upper Half Plane I

In the first part of the paper we show that the Busemann 1-compactification of the Siegel upper half plane of rank n: SHn = Sp(n, R)/Kn is the compactification as a bounded domain. In the second part of the paper we study certain properties of discrete groups Γ of biholomorphisms of SHn. We show that the set of accumulation points of the orbit Γ(Z) on the Shilov boundary of SHn is independent o...

متن کامل

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Japanese journal of mathematics :transactions and abstracts

سال: 1936

ISSN: 0075-3432,1861-3624

DOI: 10.4099/jjm1924.13.0_421