On an inverse ternary Goldbach problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ternary Goldbach problem

Leonhard Euler (1707–1783) – one of the greatest mathematicians of the eighteenth century and of all times – often corresponded with a friend of his, Christian Goldbach (1690–1764), an amateur and poly-math who lived and worked in Russia, just like Euler himself. In a letter written in June 1742, Goldbach made a conjecture – that is, an educated guess – on prime numbers: Es scheinet wenigstens,...

متن کامل

Chen’s Primes and Ternary Goldbach Problem

In Iwaniec’s unpublished notes [10], the exponent 1/10 can be improved to 3/11. In [6], Green and Tao say a prime p is Chen’s prime if p ∈ P 2 . On the other hand, in 1937 Vinogradov [18] solved the ternary Goldbach problem and showed that every sufficiently large odd integer can be represented as the sum of three primes. Two years later, using Vinogradov’s method, van der Corput [2] proved tha...

متن کامل

The ternary Goldbach problem with primes in positive density sets

Let P denote the set of all primes. P1, P2, P3 are three subsets of P . Let δ(Pi) (i = 1, 2, 3) denote the lower density of Pi in P , respectively. It is proved that if δ(P1) > 5/8, δ(P2) ≥ 5/8, and δ(P3) ≥ 5/8, then for every sufficiently large odd integer n, there exist pi ∈ Pi such that n = p1 + p2 + p3. The condition is the best possible.

متن کامل

On the ternary Goldbach problem with primes in arithmetic progressions of a common module

For A, ε > 0 and any sufficiently large odd n we show that for almost all k ≤ R := n 1/5−ε there exists a representation n = p 1 + p 2 + p 3 with primes p i ≡ b i mod k for almost all admissible triplets b 1 , b 2 , b 3 of reduced residues mod k.

متن کامل

On the Ternary Goldbach Problem with Primes in independent Arithmetic Progressions

We show that for every fixed A > 0 and θ > 0 there is a θ = θ(A, θ) > 0 with the following property. Let n be odd and sufficiently large, and let Q1 = Q2 := n 1/2(log n)−θ and Q3 := (log n) θ. Then for all q3 ≤ Q3, all reduced residues a3 mod q3, almost all q2 ≤ Q2, all admissible residues a2 mod q2, almost all q1 ≤ Q1 and all admissible residues a1 mod q1, there exists a representation n = p1+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Mathematics

سال: 2016

ISSN: 1080-6377

DOI: 10.1353/ajm.2016.0038