On Ahlfors' imaginary Schwarzian

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Ahlfors Finiteness Theorem

The goal of this note is to give a proof of the Ahlfors Finiteness theorem which requires just the bare minimum of the complex analysis: (a) the existence theorem for the Beltrami equation and (b) the Rado-Cartan uniqueness theorem for holomorphic functions. However our proof does require some (by now standard) 3-dimensional topology and Greenberg's algebraic trick to deal with the triply-punct...

متن کامل

On Zeroes of the Schwarzian Derivative

The main character of the present note is the Schwarzian derivative, and we start with a brief reminder of its definition and main properties. Let f : RP → RP be a projective line diffeomorphism. For every point x ∈ RP there exists a unique projective transformation gx : RP 1 → RP whose 2-jet at x coincides with that of f . The Schwarzian derivative S(f) measures the deviation of the 3-jet jf f...

متن کامل

Generalized Ahlfors Functions

Let Σ be a bordered Riemann surface with genus g and m boundary components. Let {γz}z∈∂Σ be a smooth family of smooth Jordan curves in C which all contain the point 0 in their interior. Let p ∈ Σ and let F be the family of all bounded holomorphic functions f on Σ such that f(p) ≥ 0 and f(z) ∈ γ̂z for almost every z ∈ ∂Σ. Then there exists a smooth up to the boundary holomorphic function f0 ∈ F w...

متن کامل

Ahlfors Theorems for Differential Forms

and Applied Analysis 3 Let y1, . . . , yk be an orthonormal system of coordinates in R, 1 ≤ k ≤ n. Let A be a domain in R, and let B be an n − k -dimensional Riemannian manifold. We consider the manifold N A × B. 2. Boundary Sets Below we introduce the notions of parabolic and hyperbolic type of boundary sets on noncompact Riemannian manifolds and study exhaustion functions of such sets. We als...

متن کامل

On Iterated Positive Schwarzian derivative Maps

The families of one-dimensional maps have been the object of many studies since [Sharkovsky, 1964], for instance in [Sharkovsky et al., 1997] or in [de Melo & van Strien, 1993], whose authors also studied this subject, we have two large surveys of the enormous effort made in the last decades in this field of work. We adopt the usual definitions as for instance symbolic dynamics or topological e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Fennici Mathematici

سال: 2021

ISSN: 2737-0690,2737-114X

DOI: 10.5186/aasfm.2021.4628