On Adjacent Vertex-distinguishing Total Chromatic Number of Generalized Mycielski Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The adjacent vertex-distinguishing total chromatic number of 1-tree

Let G = (V (G), E(G)) be a simple graph and T (G) be the set of vertices and edges of G. Let C be a k−color set. A (proper) total k−coloring f of G is a function f : T (G) −→ C such that no adjacent or incident elements of T (G) receive the same color. For any u ∈ V (G), denote C(u) = {f(u)} ∪ {f(uv)|uv ∈ E(G)}. The total k−coloring f of G is called the adjacent vertex-distinguishing if C(u) 6=...

متن کامل

A note on adjacent vertex distinguishing colorings number of graphs

For an assignment of numbers to the vertices of a graph, let S[u] be the sum of the labels of all the vertices in the closed neighborhood of u, for a vertex u. Such an assignment is called closed distinguishing if S[u] 6= S[v] for any two adjacent vertices u and v unless the closed neighborhoods of u and v coincide. In this note we investigate dis[G], the smallest integer k such that there is a...

متن کامل

Circular chromatic number for iterated Mycielski graphs

For a graph G, let M(G) denote the Mycielski graph of G. The t-th iterated Mycielski graph of G, M(G), is defined recursively by M0(G) = G and M(G)= M(Mt−1(G)) for t ≥ 1. Let χc(G) denote the circular chromatic number of G. We prove two main results: 1) Assume G has a universal vertex x, then χc(M(G)) = χ(M(G)) if χc(G − x) > χ(G − x) − 1/2 and G is not a star, otherwise χc(M(G)) = χ(M(G)) − 1/...

متن کامل

Circular Chromatic Number and Mycielski Graphs

As a natural generalization of graph coloring, Vince introduced the star chromatic number of a graph G and denoted it by χ∗(G). Later, Zhu called it circular chromatic number and denoted it by χc(G). Let χ(G) be the chromatic number of G. In this paper, it is shown that if the complement of G is non-hamiltonian, then χc(G)=χ(G). Denote by M(G) the Mycielski graph of G. Recursively define Mm(G)=...

متن کامل

A lower bound on the chromatic number of Mycielski graphs

In this work we give a new lower bound on the chromatic number of a Mycielski graph Mi. The result exploits a mapping between the coloring problem and a multiprocessor task scheduling problem. The tightness of the bound is proved for i = 1; : : : ; 8. c © 2001 Elsevier Science B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2017

ISSN: 1027-5487

DOI: 10.11650/tjm/6499