On a variational principle for Beltrami flows

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Beltrami flows over manifolds

We study, in this paper, the problem of denoising images/data which are defined over non-flat surfaces. This problem arises often in many medical imaging tasks. The Beltrami flow which was defined in an explicit-intrinsic manner is generalized here to non-flat surfaces and is defined in an implicit way. We formulate the flow in a variational way which is generalized to a scalar field defined ov...

متن کامل

A Variational Principle for Gradient Flows of Nonconvex Energies

We present a variational approach to gradient flows of energies of the form E = φ1−φ2 where φ1, φ2 are convex functionals on a Hilbert space. A global parameter-dependent functional over trajectories is proved to admit minimizers. These minimizers converge up to subsequences to gradient-flow trajectories as the parameter tends to zero. These results apply in particular to the case of non λ-conv...

متن کامل

A Maximum Principle for Beltrami Color Flow

We study, in this work, the maximum principle for the Beltrami color flow and the stability of the flow’s numerical approximation by finite difference schemes. We discuss, in the continuous case, the theoretical properties of this system and prove the maximum principle in the strong and the weak formulations. In the discrete case, all the second order explicit schemes, that are currently used, ...

متن کامل

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

The Maximum Principle for Beltrami Color Flow

We study, in this work, the maximum principle for the Beltrami color flow and the stability of the flow’s numerical approximation by finite difference schemes. We discuss, in the continuous case, the theoretical properties of this system and prove the maximum principle in the strong and the weak formulations. In the discrete case, all the second order explicit schemes, that are currently used, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2010

ISSN: 1070-6631,1089-7666

DOI: 10.1063/1.3460297