On a sub-supersolution method for the prescribed mean curvature problem
نویسندگان
چکیده
منابع مشابه
A Gluing Construction for Prescribed Mean Curvature
The gluing technique is used to construct hypersurfaces in Euclidean space having approximately constant prescribed mean curvature. These surfaces are perturbations of unions of finitely many spheres of the same radius assembled end-to-end along a line segment. The condition on the existence of these hypersurfaces is the vanishing of the sum of certain integral moments of the spheres with respe...
متن کاملOn Surfaces of Prescribed Weighted Mean Curvature
Utilizing a weight matrix we study surfaces of prescribed weighted mean curvature which yield a natural generalisation to critical points of anisotropic surface energies. We first derive a differential equation for the normal of immersions with prescribed weighted mean curvature, generalising a result of Clarenz and von der Mosel. Next we study graphs of prescribed weighted mean curvature, for ...
متن کاملOn Surfaces of Prescribed F-Mean Curvature
Hypersurfaces of prescribed weighted mean curvature, or F -mean curvature, are introduced as critical immersions of anisotropic surface energies, thus generalizing minimal surfaces and surfaces of prescribed mean curvature. We first prove enclosure theorems in R for such surfaces in cylindrical boundary configurations. Then we derive a general second variation formula for the anisotropic surfac...
متن کاملOn the Dirichlet problem for the prescribed mean curvature equation over general domains
We study and solve the Dirichlet problem for graphs of prescribed mean curvature in R over general domains Ω without requiring a mean convexity assumption. By using pieces of nodoids as barriers we first give sufficient conditions for the solvability in case of zero boundary values. Applying a result by Schulz and Williams we can then also solve the Dirichlet problem for boundary values satisfy...
متن کاملPrescribed Scalar Curvature problem on Complete manifolds
Conditions on the geometric structure of a complete Riemannian manifold are given to solve the prescribed scalar curvature problem in the positive case. The conformal metric obtained is complete. A minimizing sequence is constructed which converges strongly to a solution. In a second part, the prescribed scalar curvature problem of zero value is solved which is equivalent to find a solution to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2008
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-008-0034-7