On a Penrose-Like Inequality in Dimensions Less than Eight

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Riemannian Penrose Inequality in Dimensions Less than Eight

The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal hypersurface...

متن کامل

M ay 2 00 7 On the Riemannian Penrose inequality in dimensions less than 8

The Positive Mass Theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal surface, and equality is achieved only for Schwarzschild metrics. The Ri...

متن کامل

A Penrose-like inequality with charge

We establish a Penrose-like inequality for general (not necessarily timesymmetric) initial data sets of the Einstein–Maxwell equations, which satisfy the dominant energy condition. More precisely, it is shown that the ADM energy is bounded below by an expression which is proportional to the sum of the square root of the area of the outermost future (or past) apparent horizon and the square of t...

متن کامل

On the Penrose Inequality

We summarize results on the Penrose inequality bounding the ADM-mass or the Bondi mass in terms of the area of an outermost apparent horizon for asymptotically flat initial data of Einstein’s equations. We first recall the proof, due to Geroch and to Jang and Wald, of monotonicity of the Geroch-Hawking mass under a smooth inverse mean curvature flow for data with non-negative Ricci scalar, whic...

متن کامل

A Penrose-Like Inequality for General Initial Data Sets

We establish a Penrose-Like Inequality for general (not necessarily time symmetric) initial data sets of the Einstein equations which satisfy the dominant energy condition. More precisely, it is shown that the ADM energy is bounded below by an expression which is proportional to the square root of the area of the outermost future (or past) apparent horizon.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2017

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnx181