On a Conjecture of Cai–Zhang–Shen for Figurate Primes

نویسندگان

چکیده

A conjecture of Cai–Zhang–Shen for figurate primes says that every integer k>1 is the sum two primes. In this paper, we give an equivalent proposition to conjecture. By considering extreme value problems with constraints about in cases odd and even integers using method Lagrange multipliers, Cardano formula cubic equations, contradiction, prove

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Russo's Conjecture about Primes

Let n, k be positive integres with k>2, and let b be a posItIve number with b> I. In this paper we prove that if n>C(k) , where C(k) IS an effectively computable constant depending on k, then we have C (n,k) <21lt .

متن کامل

ON THE TIllRD SMARANDACHE CONJECTURE ABOUT PRIMES

In this paper we basically verify the third Smarandache conjecture on prime.

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

a study on thermodynamic models for simulation of 1,3 butadiene purification columns

attempts have been made to study the thermodynamic behavior of 1,3 butadiene purification columns with the aim of retrofitting those columns to more energy efficient separation schemes. 1,3 butadiene is purified in two columns in series through being separated from methyl acetylene and 1,2 butadiene in the first and second column respectively. comparisons have been made among different therm...

A Conjecture on Primes and a Step towards Justification*

For example, all the Fermat primes are evil while all the Mersenne primes > 3 are odious. Using direct calculations up to 10 we noticed that among the primes not exceeding n the evil primes are never in majority except for the cases n = 5 and n = 6. Moreover, in the considered limits the excess of the odious primes is not monotone but increases on the whole with records on primes 2, 13, 41, 67,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11061532