On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative

نویسندگان

چکیده

In this work, we consider the nonlocal obstacle problem with a given $\psi$ in bounded Lipschitz domain $\Omega$ $\mathbb{R}^{d}$, such that $\mathbb{K}\_\psi^s={v\in H^s\_0(\Omega):v\geq\psi \text{ a.e. }\Omega}\neq\emptyset$, by $$ u\in\mathbb{K}\_\psi^s:\quad\langle\mathcal{L}au,v-u\rangle\geq\langle F,v-u\rangle\quad\forall v\in\mathbb{K}^s\psi, for $F$ $H^{-s}(\Omega)$, dual space of fractional Sobolev $H^s\_0(\Omega)$, $0\<s<1$. The operator $\mathcal{L}\_a:H^s\_0(\Omega)\to H^{-s}(\Omega)$ is defined measurable, bounded, strictly positive singular kernel $a(x,y):\mathbb{R}^d\times\mathbb{R}^d\to\[0,\infty)$, bilinear form \langle\mathcal{L}au,v\rangle=\mathrm{P.V.}\int{\mathbb{R}^d}\int\_{\mathbb{R}^d} \tilde{v}(x)(\tilde{u}(x)-\tilde{u}(y))a(x,y) ,dy,dx=\mathcal{E}\_a(u,v), which (not necessarily symmetric) Dirichlet form, where $\tilde{u},\tilde{v}$ are zero extensions $u$ and $v$ outside respectively. Furthermore, show $\tilde{\mathcal{L}}A=-D^s\cdot AD^s:H^s\_0(\Omega)\to distributional Riesz $D^s$ matrix $A(x)$ corresponds to integral $\mathcal{L}{k\_A}$ well-defined $a=k\_A$. corresponding $s$-fractional $\tilde{\mathcal{L}}\_A$ shown converge as $s\nearrow1$ $H^1\_0(\Omega)$ $-D\cdot AD$ classical gradient $D$. We mainly type problems involving $\mathcal{E}a$ one or two obstacles, well $N$-membranes problem, thereby deriving several results, weak maximum principle, comparison properties, approximation penalization, also Lewy–Stampacchia inequalities. This provides regularity solutions, including global estimate $L^\infty(\Omega)$, local H\\"older solutions when $a$ symmetric, spaces $W^{2s,p}{\mathrm{loc}}(\Omega)$ $C^1(\Omega)$ $\mathcal{L}\_a=(-\Delta)^s$ $s$-Laplacian u\in\mathbb{K}^s\_\psi(\Omega):\quad\int\_{\mathbb{R}^d}(D^su-{f})\cdot D^s(v-u),dx\geq0\quad\forall v\in\mathbb{K}^s\_\psi\text{ }{f}\in \[L^2(\mathbb{R}^d)]^d. These novel results complemented extension inequalities order $H^s\_0(\Omega)$ some remarks on associated $s$-capacity $s$-nonlocal general $\mathcal{L}\_a$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional variational problems with the Riesz-Caputo derivative

In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for sever...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

On the existence of nonnegative solutions for a class of fractional boundary value problems

‎In this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎By applying Kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function‎. ‎Then the Arzela--Ascoli theorem is used to take $C^1$ ...

متن کامل

Aperiodic Fractional Obstacle Problems

We determine the asymptotic behaviour of (bilateral) obstacle problems for fractional energies in rather general aperiodic settings via Γ-convergence arguments. As further developments we consider obstacles with random sizes and shapes located on points of standard lattices, and the case of random homothetics obstacles centered on random Delone sets of points. Obstacle problems for non-local en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Portugaliae Mathematica

سال: 2023

ISSN: ['1662-2758', '0032-5155']

DOI: https://doi.org/10.4171/pm/2100