On a Berry-Esseen type limit theorem for Boolean convolution

نویسندگان

چکیده

We obtain a sharp estimate of the speed convergence in Boolean central limit theorem for measures with finite sixth moment. The main tool is quantitative version Stieltjes-Perron inversion formula.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Berry–Esseen bounds in the entropic central limit theorem

Berry–Esseen-type bounds for total variation and relative entropy distances to the normal law are established for the sums of non-i.i.d. random variables.

متن کامل

Berry Esseen Bounds for Combinatorial Central Limit

Berry Esseen type bounds to the normal, based on zeroand size-bias couplings, are derived using Stein’s method. The zero biasing bounds are illustrated with an application to combinatorial central limit theorems where the random permutation has either the uniform distribution or one which is constant over permutations with the same cycle type and having no fixed points. The size biasing bounds ...

متن کامل

On the Rate of Convergence and Berry-esseen Type Theorems for a Multivariate Free Central Limit Theorem

We address the question of a Berry Esseen type theorem for the speed of convergence in a multivariate free central limit theorem. For this, we estimate the difference between the operator-valued Cauchy transforms of the normalized partial sums in an operator-valued free central limit theorem and the Cauchy transform of the limiting operator-valued semicircular element.

متن کامل

An Inductive Proof of the Berry-Esseen Theorem for Character Ratios Running head: Berry-Esseen Theorem for Character Ratios

Ratios Running head: Berry-Esseen Theorem for Character Ratios Submitted 3/9/05; Revised 8/6/06 By Jason Fulman Department of Mathematics, University of Southern California Los Angeles, CA 90089, USA [email protected] Abstract: Bolthausen used a variation of Stein’s method to give an inductive proof of the Berry-Esseen theorem for sums of independent, identically distributed random variables. We m...

متن کامل

A Sub-Gaussian Berry-Esseen Theorem For the Hypergeometric Distribution

In this paper, we derive a necessary and sufficient condition on the parameters of the Hypergeometric distribution for weak convergence to a Normal limit. We establish a Berry-Esseen theorem for the Hypergeometric distribution solely under this necessary and sufficient condition. We further derive a nonuniform Berry-Esseen bound where the tails of the difference between the Hypergeometric and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2022

ISSN: ['1083-589X']

DOI: https://doi.org/10.1214/22-ecp448