Numerically stable LDLT-factorization of F-type saddle point matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerically stable LDL T - factorization of F - type saddle point matrices

We present a new algorithm that constructs a fill-reducing ordering for a special class of saddle point matrices: the F -matrices. This class contains the matrix occurring after discretization of the Stokes equation on a C-grid. The commonly used approach is to construct a fill-reducing ordering for the whole matrix and then change the ordering such that it becomes feasible. We propose to compu...

متن کامل

The Antitriangular Factorization of Saddle Point Matrices

Mastronardi and Van Dooren [this journal, 34 (2013) pp. 173–196] recently introduced the block antitriangular (“Batman”) decomposition for symmetric indefinite matrices. Here we show the simplification of this factorisation for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated in...

متن کامل

Sparse block factorization of saddle point matrices

The factorization method presented in this paper takes advantage of the special structures and properties of saddle point matrices. A variant of Gaussian elimination equivalent to the Cholesky’s factorization is suggested and implemented for factorizing the saddle point matrices block-wise with small blocks of order 1 and 2. The Gaussian elimination applied to these small blocks on block level ...

متن کامل

Incomplete Factorization Constraint Preconditioners for Saddle-point Matrices

We consider the application of the conjugate gradient method to the solution of large symmetric, indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerica...

متن کامل

Approximate Factorization Constraint Preconditioners for Saddle-Point Matrices

We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IMA Journal of Numerical Analysis

سال: 2008

ISSN: 0272-4979,1464-3642

DOI: 10.1093/imanum/drn005