Numerically quantifying energy loss caused by squirt flow
نویسندگان
چکیده
منابع مشابه
Architected squirt-flow materials for energy dissipation
In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly defor...
متن کاملQuantifying Transport in Numerically-Generated Velocity Fields
Geometric methods from dynamical systems are used to study Lagrangian transport in numerically-generated, time-dependent, two-dimensional vector elds. The ows analyzed here are numerical solutions to the barotropic, -plane, potential vorticity equation with viscosity, where the pde parameters have been chosen so that the solution evolves to a meandering jet. Numerical methods for approximating ...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Quantifying Cognitive Decrements Caused by Cranial Radiotherapy
With the exception of survival, cognitive impairment stemming from the clinical management of cancer is a major factor dictating therapeutic outcome. For many patients afflicted with CNS and non-CNS malignancies, radiotherapy and chemotherapy offer the best options for disease control. These treatments however come at a cost, and nearly all cancer survivors (~11 million in the US alone as of 20...
متن کاملQuantifying the Energy Efficiency of Object Recognition and Optical Flow
In this report, we analyze the computational and performance aspects of current stateof-the-art object recognition and optical flow algorithms. First, we identify important algorithms for object recognition and optical flow, then we perform a pattern decomposition to identify key computations. We include profiles of the runtime and energy efficiency (GFLOPS/W) for our implementation of these ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Prospecting
سال: 2019
ISSN: 0016-8025,1365-2478
DOI: 10.1111/1365-2478.12832