Numerical treatment of a geometrically nonlinear planar Cosserat shell model
نویسندگان
چکیده
منابع مشابه
Coupling Geometrically Exact Cosserat Rods
Cosserat rods are models for long slender objects. Let SE(3) = R3 SO(3) be the 13 group of orientation-preserving rigid body motions of R3 (the special Euclidean 14 group). A configuration of a Cosserat rod is a map φ : [0,1] → SE(3). For each 15 s ∈ [0,1], the value φ(s) = (φr(s),φq(s)) is interpreted as the position φr(s)∈R and 16 orientation φq(s)∈ SO(3) of a rigid rod cross section. Strain ...
متن کاملOptimal Design of Geometrically Nonlinear Structures Under a Stability Constraint
This paper suggests an optimization-based methodology for the design of minimum weight structures with kinematic nonlinear behavior. Attention is focused on three-dimensional reticulated structures idealized with beam elements under proportional static loadings. The algorithm used for optimization is based on a classical optimality criterion approach using an active-set strategy for extreme lim...
متن کاملMultibody dynamics simulation of geometrically exact Cosserat rods
In this paper, we present a viscoelastic rod model that is suitable for fast and accurate dynamic simulations. It is based on Cosserat’s geometrically exact theory of rods and is able to represent extension, shearing (‘stiff’ dof), bending and torsion (‘soft’ dof). For inner dissipation, a consistent damping potential proposed by Antman is chosen. We parametrise the rotational dof by unit quate...
متن کاملA two-dimensional numerical model of a planar solid oxide fuel cell
A two-dimensional CFD model of a planar solid oxide fuel cell (SOFC) has been developed.This model can predict the performance of SOFC at various operating and design conditions.The effect of Knudsen diffusion is accounted in the porous electrode (backing) and reaction zonelayers. The mathematical model solves conservation of electrons and ions and conservation ofspecies. The model is formulate...
متن کاملA geometrically nonlinear finite-element model of the cat eardrum.
Current finite-element (FE) models of the eardrum are limited to low pressures because of the assumption of linearity. Our objective is to investigate the effects of geometric nonlinearity in FE models of the cat eardrum with an approximately immobile malleus for pressures up to +/-2.2 kPa, which are within the range of pressures used in clinical tympanometry. Displacements computed with nonlin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Mechanics
سال: 2016
ISSN: 0178-7675,1432-0924
DOI: 10.1007/s00466-016-1263-5