Numerical solution of the nonlinear Klein–Gordon equation
نویسندگان
چکیده
منابع مشابه
Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملNumerical solution of the nonlinear Klein-Gordon equation
This paper’s purpose is to provide a numerical scheme to approximate solutions of the nonlinear Klein-Gordon equation by applying the multiquadric quasi-interpolation scheme and the integrated radial basis function network scheme. Our scheme uses θ-weighted scheme for discretization of the temporal derivative and the integrated form of the multiquadric quasi-interpolation scheme for approximati...
متن کاملThe numerical solution of a nonlinear hypersingular boundary integral equation
In this paper we consider a direct hypersingular integral approach to solve harmonic problems with nonlinear boundary conditions by using a practical variant of the Galerkin boundary element method. The proposed approach provides an almost optimal balance between the order of convergence and the numerical effort of work to compute the approximate solution. Numerical examples confirm the theoret...
متن کاملNumerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions
In [J. Comput. Phys. 171 (2001) 632–677] we developed a fourth-order numerical method for solving the nonlinear Helmholtz equation which governs the propagation of time-harmonic laser beams in media with a Kerr-type nonlinearity. A key element of the algorithm was a new nonlocal two-way artificial boundary condition (ABC), set in the direction of beam propagation. This two-way ABC provided for ...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2010
ISSN: 0377-0427
DOI: 10.1016/j.cam.2009.09.023