منابع مشابه
Schur product of matrices and numerical radius (range) preserving maps
Let F (A) be the numerical range or the numerical radius of a square matrix A. Denote by A◦B the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying F (A ◦ B) = F (φ(A) ◦ φ(B)) for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices. 2000 Mathematics Subject Classification. 15A04, 15A18, 15A60
متن کاملNumerical Range for Random Matrices
We analyze the numerical range of high-dimensional random matrices, obtaining limit results and corresponding quantitative estimates in the non-limit case. For a large class of random matrices their numerical range is shown to converge to a disc. In particular, numerical range of complex Ginibre matrix almost surely converges to the disk of radius √ 2. Since the spectrum of non-hermitian random...
متن کاملProduct of Operators and Numerical Range
We show that a bounded linear operator A ∈ B(H) is a multiple of a unitary operator if and only if AZ and ZA always have the same numerical radius or the same numerical range for all (rank one) Z ∈ B(H). More generally, for any bounded linear operators A,B ∈ B(H), we show that AZ and ZB always have the same numerical radius (resp., the same numerical range) for all (rank one) Z ∈ B(H) if and on...
متن کاملMinkowski product of convex sets and product numerical range
Let K1,K2 be two compact convex sets in C. Their Minkowski product is the set K1K2 = {ab : a ∈ K1, b ∈ K2}. We show that the set K1K2 is star-shaped if K1 is a line segment or a circular disk. Examples for K1 and K2 are given so that K1 and K2 are triangles (including interior) and K1K2 is not star-shaped. This gives a negative answer to a conjecture by Puchala et. al concerning the product num...
متن کاملNumerical Range of Lie Product of Operators
Denote by W (A) the numerical range of a bounded linear operator A, and [A, B] = AB −BA the Lie product of two operators A and B. Let H, K be complex Hilbert spaces of dimension ≥ 2 and Φ : B(H) → B(K) be a map whose range contains all operators of rank ≤ 1. It is shown that Φ satisfies that W ([Φ(A), Φ(B)]) = W ([A, B]) for any A, B ∈ B(H) if and only if dim H = dim K, there exist ε ∈ {1,−1}, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2012
ISSN: 0024-3795
DOI: 10.1016/j.laa.2012.04.022