Numerical Modelling of Ultra-High Molecular Weight Polyethylene Composite under Impact Loading
نویسندگان
چکیده
منابع مشابه
Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions.
When subjected to a monotonically increasing deformation state, the mechanical behavior of UHMWPE is characterized by a linear elastic response followed by distributed yielding and strain hardening at large deformations. During the unloading phases of an applied cyclic deformation process, the response is characterized by nonlinear recovery driven by the release of stored internal energy. A num...
متن کاملMechanisms of the penetration of ultra-high molecular weight polyethylene composite beams
A number of mechanisms have been proposed for the penetration of laminates comprising ultra-high molecular weight polyethylene (UHMWPE) fibres in a polymeric matrix. Two-dimensional ballistic experiments are conducted in order to directly observe the transient deformation and failure processes occurring immediately under the projectile via high-speed photography. Two sets of experiments were co...
متن کاملProperties of crosslinked ultra-high-molecular-weight polyethylene.
Substantially reducing the rate of generation of wear particles at the surfaces of ultra-high-molecular-weight polyethylene (UHMWPE) orthopedic implant bearing components, in vivo, is widely regarded as one of the most formidable challenges in modern arthroplasty. In the light of this, much research attention has been paid to the myriad of endogenous and exogenous factors that have been postula...
متن کاملSynthesis of high molecular weight polyethylene using FI catalyst
A FI Zr-based catalyst of bis[N-(3,5-dicumylsalicylidene)-2′,6′diisopropylanilinato]zirconium(IV) dichloride was prepared and used for polymerization of ethylene. The effects of reaction conditions on the polymerization were examined in detail. The increase in ethylene pressure and rise in polymerization temperature up to 35 oC were favorable for catalyst/MAO to raise the catalytic activity as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Engineering
سال: 2015
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2015.04.043