Numerical Inverse Transformation Methods for Z-Transform
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولNumerical Methods for Inverse Singular Value Problems
Two numerical methods one continuous and the other discrete are proposed for solving inverse singular value problems The rst method consists of solving an ordinary di erential equation obtained from an explicit calculation of the projected gradient of a certain objective function The second method generalizes an iterative process proposed originally by Friedland et al for solving inverse eigenv...
متن کاملInexact Numerical Methods for Inverse Eigenvalue Problems
In this paper, we survey some of the latest development in using inexact Newton-like methods for solving inverse eigenvalue problems. These methods require the solutions of nonsymmetric and large linear systems. One can solve the approximate Jacobian equation by iterative methods. However, iterative methods usually oversolve the problem in the sense that they require far more (inner) iterations...
متن کاملDeveloping And Comparing Numerical Methods For Computing The Inverse Fourier Transform
Computing the Fourier transform and its inverse is important in many applications of mathematics, such as frequency analysis, signal modulation, and filtering. Two methods will be derived for numerically computing the inverse Fourier transforms, and they will be compared to the standard inverse discrete Fourier transform (IDFT) method. The first computes the inverse Fourier transform through di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8040556