Numerical homogenization for nonlinear strongly monotone problems

نویسندگان

چکیده

Abstract In this work we introduce and analyse a new multiscale method for strongly nonlinear monotone equations in the spirit of localized orthogonal decomposition. A problem-adapted space is constructed by solving linear local fine-scale problems, which then used generalized finite element method. The linearity problems allows their localization and, moreover, makes very efficient to use. gives optimal priori error estimates up linearization errors. results neither require structural assumptions on coefficient such as periodicity or scale separation nor higher regularity solution. effect different strategies discussed theory practice. Several numerical examples including stationary Richards equation confirm underline applicability

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearized Numerical Homogenization Method for Nonlinear Monotone Parabolic Multiscale Problems

We introduce and analyze an efficient numerical homogenization method for a class of nonlinear parabolic problems of monotone type in highly oscillatory media. The new scheme avoids costly Newton iterations and is linear at both the macroscopic and the microscopic scales. It can be interpreted as a linearized version of a standard nonlinear homogenization method. We prove the stability of the m...

متن کامل

Linerarized numerical homogenization method for nonlinear monotone parabolic multiscale problems

We introduce and analyze an efficient numerical homogenization method for a class of nonlinear parabolic problems of monotone type in highly oscillatory media. The new scheme avoids costly Newton iterations and is linear at both the macroscopic and the microscopic scales. It can be interpreted as a linearized version of a standard nonlinear homogenization method. We prove the stability of the m...

متن کامل

Numerical homogenization methods for parabolic monotone problems

In this paper we review various numerical homogenization methods for monotone parabolic problems with multiple scales. The spatial discretisation is based on finite element methods and the multiscale strategy relies on the heterogeneous multiscale method. The time discretization is performed by several classes of Runge-Kutta methods (strongly A−stable or explicit stabilized methods). We discuss...

متن کامل

Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization

We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L norm. We then derive optimal a priori error estimates in the H and L norm for a FEM with variational crimes due to numerical integration. As an application we d...

متن کامل

Numerical Homogenization of Monotone Elliptic Operators

In this paper we construct a numerical homogenization technique for nonlinear elliptic equations. In particular, we are interested in when the elliptic flux depends on the gradient of the solution in a nonlinear fashion which makes the numerical homogenization procedure nontrivial. The convergence of the numerical procedure is presented for the general case using G-convergence theory. To calcul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ima Journal of Numerical Analysis

سال: 2021

ISSN: ['1464-3642', '0272-4979']

DOI: https://doi.org/10.1093/imanum/drab004