Numerical Blow-Up Time for a Semilinear Parabolic Equation with Nonlinear Boundary Conditions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Blow-Up Time for a Semilinear Parabolic Equation with Nonlinear Boundary Conditions

We obtain some conditions under which the positive solution for semidiscretizations of the semilinear equation ut uxx − a x, t f u , 0 < x < 1, t ∈ 0, T , with boundary conditions ux 0, t 0, ux 1, t b t g u 1, t , blows up in a finite time and estimate its semidiscrete blow-up time. We also establish the convergence of the semidiscrete blow-up time and obtain some results about numerical blow-u...

متن کامل

Blow-up for a Semilinear Parabolic Equation with Nonlinear Memory and Nonlocal Nonlinear Boundary

where Ω is a bounded domain in RN for N ≥ 1 with C2 boundary ∂Ω, p, q, l and k are positive parameters, the weight function f (x, y) is nonnegative, nontrivial, continuous and defined for x ∈ ∂Ω, y ∈ Ω, while the nonnegative nontrivial initial Received November 14, 2012, accepted January 28, 2013. Communicated by Eiji Yanagida. 2010 Mathematics Subject Classification: 35B35, 35K50, 35K55.

متن کامل

Blow-up analysis for a semilinear parabolic equation with nonlinear memory and nonlocal nonlinear boundary condition

In this paper, we consider a semilinear parabolic equation ut = ∆u + u q ∫ t 0 u(x, s)ds, x ∈ Ω, t > 0 with nonlocal nonlinear boundary condition u|∂Ω×(0,+∞) = ∫ Ω φ(x, y)u (y, t)dy and nonnegative initial data, where p, q ≥ 0 and l > 0. The blow-up criteria and the blow-up rate are obtained.

متن کامل

The Blow–up Rate for a Semilinear Parabolic Equation with a Nonlinear Boundary Condition

In this paper we obtain the blow-up rate for positive solutions of ut = uxx−λu, in (0, 1)×(0, T ) with boundary conditions ux(1, t) = uq(1, t), ux(0, t) = 0. If p < 2q − 1 or p = 2q − 1, 0 < λ < q, we find that the behaviour of u is given by u(1, t) ∼ (T − t) − 1 2(q−1) and, if λ < 0 and p ≥ 2q − 1, the blow up rate is given by u(1, t) ∼ (T − t) − 1 p−1 . We also characterize the blow-up profil...

متن کامل

A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions

In this paper we study a simple non-local semilinear parabolic equation with Neumann boundary condition. We give local existence result and prove global existence for small initial data. A natural non increasing in time energy is associated to this equation. We prove that the solution blows up at finite time T if and only if its energy is negative at some time before T . The proof of this resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2008

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2008/753518