Numerical analysis of Lane Emden–Fowler equations
نویسندگان
چکیده
منابع مشابه
Numerical Study of Fractional Differential Equations of Lane-Emden Type by Method of Collocation
Lane-Emden differential equations of order fractional has been studied. Numerical solution of this type is considered by collocation method. Some of examples are illustrated. The comparison between numerical and analytic methods has been introduced.
متن کاملNumerical Analysis of Ordinary Differential Equations
Since many ordinary differential equations (ODEs) do not have a closed solution, approximating them is an important problem in numerical analysis. This work formalizes a method to approximate solutions of ODEs in Isabelle/HOL. We formalize initial value problems (IVPs) of ODEs and prove the existence of a unique solution, i.e. the Picard-Lindelöf theorem. We introduce general one-step methods f...
متن کاملSeparable solutions of quasilinear Lane-Emden equations
For 0 < p − 1 < q and either ǫ = 1 or ǫ = −1, we prove the existence of solutions of −∆pu = ǫu q in a cone CS , with vertex 0 and opening S, vanishing on ∂CS , under the form u(x) = |x|ω( x |x|). The problem reduces to a quasilinear elliptic equation on S and existence is based upon degree theory and homotopy methods. We also obtain a non-existence result in some critical case by an integral ty...
متن کاملA Numerical Method for Lane-Emden Equations Using Hybrid Functions and the Collocation Method
A numerical method to solve Lane-Emden equations as singular initial value problems is presented in this work. This method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The collocation method transforms the differential equation into a system of algebraic equations. It also has application in a wide area...
متن کاملPresentation of two models for the numerical analysis of fractional integro-differential equations and their comparison
In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Taibah University for Science
سال: 2018
ISSN: 1658-3655
DOI: 10.1080/16583655.2018.1451118