Number gestures predict learning of number words
نویسندگان
چکیده
منابع مشابه
Nonliteral understanding of number words.
One of the most puzzling and important facts about communication is that people do not always mean what they say; speakers often use imprecise, exaggerated, or otherwise literally false descriptions to communicate experiences and attitudes. Here, we focus on the nonliteral interpretation of number words, in particular hyperbole (interpreting unlikely numbers as exaggerated and conveying affect)...
متن کاملNeural correlates of merging number words
Complex number words (e.g., "twenty two") are formed by merging together several simple number words (e.g., "twenty" and "two"). In the present study, we explored the neural correlates of this operation and investigated to what extent it engages brain areas involved processing numerical quantity and linguistic syntactic structure. Participants speaking two typologically distinct languages, Fren...
متن کاملSequences with constant number of return words
An infinite word has the property Rm if every factor has exactly m return words. Vuillon showed that R2 characterizes Sturmian words. We prove that a word satisfies Rm if its complexity function is (m − 1)n + 1 and if it contains no weak bispecial factor. These conditions are necessary for m = 3, whereas for m = 4 the complexity function need not be 3n + 1. A new class of words satisfying Rm is...
متن کاملThe Number of Runs in Sturmian Words
Denote by S the class of standard Sturmian words. It is a class of highly compressible words extensively studied in combinatorics of words, including the well known Fibonacci words. The suffix automata for these words have a very particular structure. This implies a simple characterization (described in the paper by the Structural Lemma) of the periods of runs (maximal repetitions) in Sturmian ...
متن کاملThe number of binary rotation words
We consider binary rotation words generated by partitions of the unit circle to two intervals and give a precise formula for the number of such words of length n. We also give the precise asymptotics for it, which happens to be Θ(n). The result continues the line initiated by the formula for the number of all Sturmian words obtained by Lipatov [Problemy Kibernet. 39 (1982) 67–84], then independ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Developmental Science
سال: 2019
ISSN: 1363-755X,1467-7687
DOI: 10.1111/desc.12791