Note on response dimension reduction for multivariate regression

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moment Based Dimension Reduction for Multivariate Response Regression

Dimension reduction aims to reduce the complexity of a regression without requiring a pre-specified model. In the case of multivariate response regressions, covariance-based estimation methods for the k-th moment based dimension reduction subspaces circumvent slicing and nonparametric estimation so that they are readily applicable to multivariate regression settings. In this article, the covari...

متن کامل

Dimension-Reduction in Binary Response Regression

The idea of dimension-reduction without loss of information can be quite helpful for guiding the construction of summary plots in regression without requiring a pre-specified model. Focusing on the central subspace, we investigate such “sufficient” dimension-reduction in regressions with a binary response. Three existing methods, SIR and pHd and SAVE, and one new method DOC are studied for thei...

متن کامل

Dimension Reduction for Multivariate Emulation

This article discusses the dimensionality reduction methods investigated during the Predicting Uncertainty in Complex Models (PUCM) Research Playground. We provide an overview of the theory of the methods examined and apply them to the output of a climate model. Our goal is to examine dimensionality reduction methods within the wider context of multivariate emulation as a way of handling model ...

متن کامل

Dimension reduction and coefficient estimation in multivariate linear regression

We introduce a general formulation for dimension reduction and coefficient estimation in the multivariate linear model. We argue that many of the existing methods that are commonly used in practice can be formulated in this framework and have various restrictions. We continue to propose a new method that is more flexible and more generally applicable. The method proposed can be formulated as a ...

متن کامل

Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection in Multivariate Regression

The reduced-rank regression is an effective method to predict multiple response variables from the same set of predictor variables, because it can reduce the number of model parameters as well as take advantage of interrelations between the response variables and therefore improve predictive accuracy. We propose to add a new feature to the reduced-rank regression that allows selection of releva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications for Statistical Applications and Methods

سال: 2019

ISSN: 2383-4757

DOI: 10.29220/csam.2019.26.5.519