Note on B-splines, wavelet scaling functions, and gabor frames

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on B-splines, wavelet scaling functions, and Gabor frames

Let g be a continuous, compactly supported function on R such that the integer translates of g constitute a partition of unity. We show that the Gabor system (g, a, b), with window g and time-shift and frequency-shift parameters a, b > 0 has no lower frame bound larger than 0 if b = 2, 3, . . . and a > 0. In particular, (g, a, b) is not a Gabor frame if g is a continuous, compactly supported wa...

متن کامل

Zak transforms and Gabor frames of totally positive functions and exponential B-splines

We study totally positive (TP) functions of finite type and exponential Bsplines as window functions for Gabor frames. We establish the connection of the Zak transform of these two classes of functions and prove that the Zak transforms have only one zero in their fundamental domain of quasi-periodicity. Our proof is based on the variation-diminishing property of shifts of exponential B-splines....

متن کامل

On transformations between Gabor frames and wavelet frames

We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly supported splines with geometrically distributed knot sequences. There is also a reverse transform, whi...

متن کامل

Peaks and jumps reconstruction with B-splines scaling functions

We consider a methodology based in B-splines scaling functions to numerically invert Fourier or Laplace transforms. The methodology is particularly well suited when the original function or its derivatives present peaks or jumps due to discontinuities in the domain.

متن کامل

From Dual Pairs of Gabor Frames to Dual Pairs of Wavelet Frames and vice Versa Ole Christensen and Say

We discuss an elementary procedure that allows us to construct dual pairs of wavelet frames based on certain dual pairs of Gabor frames and vice versa. The construction preserves tightness of the involved frames. Starting with Gabor frames generated by characteristic functions the construction leads to a class of tight wavelet frames that include the Shannon (orthonormal) wavelet, and applying ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2003

ISSN: 0018-9448

DOI: 10.1109/tit.2003.820022