Norm-preserving extension of convex Lipschitz functions
نویسندگان
چکیده
منابع مشابه
The Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex $alpha$-spirallike Functions
For a constant $alphain left(-frac{pi}{2},frac{pi}{2}right)$, we definea subclass of the spirallike functions, $SP_{p}(alpha)$, the setof all functions $fin mathcal{A}$[releft{e^{-ialpha}frac{zf'(z)}{f(z)}right}geqleft|frac{zf'(z)}{f(z)}-1right|.]In the present paper, we shall give the estimate of the norm of the pre-Schwarzian derivative $mathrm{T}...
متن کاملExtension of P-adic Definable Lipschitz Functions
Write OK for the valuation ting, MK for the maximal ideal of K and kK for the residue field. Let us fix $ some uniformizer of K. We denote by acm : K → OK/(MK) the map sending some nonzero x ∈ K to x$−ord(x) mod MK , and sending zero to zero. This is a definable map. We denote by RV the union of K×/(1 +MK) and {0} and by rv : K → RV the quotient map. More generally, if m ∈ N∗, we set RVm = K×/(...
متن کاملCharacterization of Lipschitz Continuous Difference of Convex Functions
We give a necessary and sufficient condition for a difference of convex (DC, for short) functions, defined on a normed space, to be Lipschitz continuous. Our criterion relies on the intersection of the ε-subdifferentials of the involved functions.
متن کاملOn Estimates of Biharmonic Functions on Lipschitz and Convex Domains
Abstract. Using Maz’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in R. For n ≥ 8, combined with a result in [S2], these estimates lead to the solvability of the L Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1978
ISSN: 0021-9045
DOI: 10.1016/0021-9045(78)90028-x