Norm of the Bergman projection onto the Bloch space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bergman Spaces, the Bloch Space, and Gleason's Problem

Suppose / is a holomorphic function on the open unit ball Bn of Cn. For 1 < p < oo and to > 0 an integer, we show that / is in Lp(Bn,dV) (with dV the volume measure) iff all the functions dmf/dza (\a\ = to) are in Lp(Bn,dV). We also prove that / is in the Bloch space of Bn iff all the functions dmf/dza (\a\ = m) are bounded on Bn. The corresponding result for the little Bloch space of Bn is est...

متن کامل

The Closure of the Hardy Space in the Bloch Norm

A description of the closure in the Bloch norm of the Bloch functions that are in a Hardy space is given. The result uses the classical estimates for the Lusin area function. §

متن کامل

Gradient Space Projection Projections onto the Hemisphere

In this paper we present a simple method for handling projections on the hemisphere. The proposed method defines a coordinate system on the hemisphere surface that effectively converts the hemisphere to an infinite plane tangent to the top of the hemisphere, which is called the gradient space. Using this coordinate system, projections onto the hemisphere are replaced by simple perspective proje...

متن کامل

Essential norm of weighted composition operator between α-Bloch space and β-Bloch space in polydiscs

Let ϕ(z) = (ϕ 1 (z),...,ϕ n (z)) be a holomorphic self-map of D n and ψ(z) a holomorphic function on D n , where D n is the unit polydiscs of C n. Let 0 < α, β < 1, we compute the essential norm of a weighted composition operator ψC ϕ between α-Bloch space Ꮾ α (D n) and β-Bloch space Ꮾ β (D n).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Operator Theory

سال: 2015

ISSN: 0379-4024,1841-7744

DOI: 10.7900/jot.2013sep24.2006