Nonstratifiability of topological vector spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

s-Topological vector spaces

In this paper, we have dened and studied a generalized form of topological vector spaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of Levine. Along with other results, it is proved that every s-topological vector space is generalized homogeneous space. Every open subspace of an s-topological vector space is...

متن کامل

On $beta-$topological vector spaces

We introduce and study a new class of spaces, namely $beta-$topological vector spaces via $beta-$open sets. The relationships among these spaces with some existing spaces are investigated. In addition, some important and useful characterizations of $beta-$topological vector spaces are provided.  

متن کامل

s-topological vector spaces

in this paper, we have de ned and studied a generalized form of topological vectorspaces called s-topological vector spaces. s-topological vector spaces are de ned by using semi-open sets and semi-continuity in the sense of levine. along with other results, it is provedthat every s-topological vector space is generalized homogeneous space. every open subspaceof an s-topological vector space is ...

متن کامل

ON LOCAL BOUNDEDNESS OF I-TOPOLOGICAL VECTOR SPACES

The notion of generalized locally bounded $I$-topological vectorspaces is introduced. Some of their important properties arestudied. The relationship between this kind of spaces and thelocally bounded $I$-topological vector spaces introduced by Wu andFang [Boundedness and locally bounded fuzzy topological vectorspaces, Fuzzy Math. 5 (4) (1985) 87$-$94] is discussed. Moreover, wealso use the fam...

متن کامل

Topological vector spaces

Each space C N = {f ∈ C c (R) : sptf ⊂ [−N,N ]} ⊂ C[−N,N ] is strictly smaller than the space C[−N,N ] of all continuous functions on the interval [−N,N ], since functions in C N must vanish at the endpoints. Still, C o N is a closed subspace of the Banach space C [−N,N ] (with sup norm), since a sup-norm limit of functions vanishing at ±N must also vanish there. Thus, each individual C N is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1998

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(97)00113-2