Nonstationary Waveform Relaxation Methods for Abel Integral Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waveform Relaxation Methods of Nonlinear Integral - Differential - Algebraic Equations

WAVEFORM RELAXATION METHODS OF NONLINEAR INTEGRAL-DIFFERENTIAL-ALGEBRAIC EQUATIONS ∗1) Yao-lin Jiang (Department of Mathematical Sciences, Xi’an Jiaotong University, Xi’an 710049, China) Abstract In this paper we consider continuous-time and discrete-time waveform relaxation methods for general nonlinear integral-differential-algebraic equations. For the continuous-time case we derive the conve...

متن کامل

Waveform relaxation methods for implicit differential equations

We apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems increases linearly with the number of stages of the underlying Runge-Kutta method, resulting in high linear alg...

متن کامل

Waveform Relaxation Methods for Stochastic Differential Equations

The solution of complex and large scale systems plays a crucial role in recent scientific computations. In particular, large scale stochastic dynamical systems represent very complex systems incorporating the random appearances of physical processes in nature. The development of efficient numerical methods to study such large scale systems, which can be characterized as weakly coupled subsystem...

متن کامل

Waveform Relaxation of Linear Integral-Differential Equations for Circuit Simulation

We present waveform relaxation of linear integral-di erential equations which occur in circuit simulation. We give su cient conditions for convergence and numerical experiments to verify the theoretical results.

متن کامل

Waveform Relaxation for Functional-diierential Equations Waveform Relaxation for Functional-diierential Equations Waveform Relaxation for Functional-differential Equations

The convergence of waveform relaxation techniques for solving functional-diierential equations is studied. New error estimates are derived that hold under linear and nonlinear conditions for the right-hand side of the equation. Sharp error bounds are obtained under generalized time-dependent Lipschitz conditions. The convergence of the waveform method and the quality of the a priori error bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Integral Equations and Applications

سال: 2004

ISSN: 0897-3962

DOI: 10.1216/jiea/1181075258