Nonstationary frames of translates and frames from the Weyl-Heisenberg group and the extended affine group
نویسندگان
چکیده
Abstract In this work, we analyze Gabor frames for the Weyl--Heisenberg group and wavelet extended affine group. Firstly, give necessary sufficient conditions existence of nonstationary translates. Using these conditions, prove from We present a representation functions in closure linear span frame sequence terms Fourier transform window functions. show that canonical dual translates has same structure. An approximation inverse operator is presented. It shown Riesz basis if it linearly independent satisfies operator. Finally, equivalent to be independent.
منابع مشابه
Lattice Tiling and the Weyl-Heisenberg Frames
Let L and K be two full rank lattices in R. We prove that if v(L) = v(K), i.e. they have the same volume, then there exists a measurable set Ω such that it tiles R by both L and K. A counterexample shows that the above tiling result is false for three or more lattices. Furthermore, we prove that if v(L) ≤ v(K) then there exists a measurable set Ω such that it tiles by L and packs by K. Using th...
متن کاملPerturbations of Weyl-heisenberg Frames
for all f ∈ H . The constant A (respectively, B) is a lower (resp. upper) frame bound for the frame. One of the most important frames for applications, especially signal processing, are the Weyl-Heisenberg frames. For g ∈ L(R) we define the translation parameter a > 0 and the modulation parameter b > 0 by: Embg(t) = e , Tnag(t) = g(t− na). For g ∈ L(R) and a, b > 0, we say for short that (g, a,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A
سال: 2023
ISSN: ['1751-8113', '1751-8121']
DOI: https://doi.org/10.1088/1751-8121/aceae1