Nonstandard Theory of Zariski Rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pro-` Galois Theory of Zariski Prime Divisors

— In this paper we show how to recover a special class of valuations (which generalize in a natural way the Zariski prime divisors) of function fields from the Galois theory of the functions fields in discussion. These valuations play a central role in the birational anabelian geometry and related questions. Résumé (Théorie de Galois pro-` des diviseurs premiers de Zariski) Dans cet article nou...

متن کامل

Nonstandard Methods for Bounds in Differential Polynomial Rings

Motivated by the problem of the existence of bounds on degrees and orders in checking primality of radical (partial) differential ideals, the nonstandard methods of van den Dries and Schmidt [“Bounds in the theory of polynomial rings over fields. A nonstandard approach.”, Inventionnes Mathematicae, 76:77–91, 1984] are here extended to differential polynomial rings over differential fields. Amon...

متن کامل

Axiom of Choice in nonstandard set theory

We verify that the best-known nonstandard set theories: IST, BST, and HST, with the Axiom of Choice deleted, are conservative extensions of ZF + Boolean Prime Ideal Theorem. 2010 Mathematics Subject Classification 26E35 (primary); 03E25, 03E70, 03H05 (secondary)

متن کامل

Pro-` Abelian-by-central Galois Theory of Zariski Prime Divisors

In the present paper I show that one can recover much of the inertia structure of Zariski (quasi) divisors of a function field K|k over an algebraically closed base field k from the maximal pro-` abelian-by-central Galois theory of K. The results play a central role in the birational anabelian geometry and related questions.

متن کامل

Representation Theory of the Nonstandard Hecke Algebra

The nonstandard Hecke algebra Ȟr was defined in [11] to study the Kronecker problem. We study a quotient Ȟr,2 of Ȟr , called the nonstandard Temperley-Lieb algebra, which is simpler than Ȟr. It is defined to be the subalgebra of Hr,2⊗Hr,2 generated by Pi := C ′ i ⊗C ′ i +Ci ⊗Ci, i ∈ [r− 1], where Hr,2 is the Temperley-Lieb algebra and C i and Ci are Kazhdan-Lusztig basis elements. We give a com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1971

ISSN: 0002-9939

DOI: 10.2307/2037667