Nonsolvable groups with few character degrees
نویسندگان
چکیده
منابع مشابه
Nonsolvable Groups with No Prime Dividing Three Character Degrees
Throughout this note, G will be a finite group, Irr(G) will be the set of irreducible characters of G, and cd(G) will be the set of character degrees of G. We consider groups where no prime divides at least three degrees in cd(G). Benjamin studied this question for solvable groups in [1]. She proved that solvable groups with this property satisfy |cd(G)| 6 6. She also presented examples to show...
متن کاملFinite p-groups with few non-linear irreducible character kernels
Abstract. In this paper, we classify all of the finite p-groups with at most three non linear irreducible character kernels.
متن کاملNonsolvable Groups All of Whose Character Degrees Are Odd-Square-Free
A finite group G is odd-square-free if no irreducible complex character of G has degree divisible by the square of an odd prime. We determine all odd-square-free groups G satisfying S 6 G 6 Aut(S) for a finite simple group S. More generally, we show that ifG is any nonsolvable odd-square-free group, then G has at most two nonabelian chief factors and these must be simple odd-square-free groups....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2005
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2005.01.006