Nonparametric relative recursive regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Regression

This article has no abstract.

متن کامل

Recursive estimation of nonparametric regression with functional covariate

The main purpose of this work is to estimate the regression function of a real random variable with functional explanatory variable by using a recursive nonparametric kernel approach. The mean square error and the almost sure convergence of a family of recursive kernel estimates of the regression function are derived. These results are established with rates and precise evaluation of the consta...

متن کامل

Nonparametric Inference Relative Errors of Difference-Based Variance Estimators in Nonparametric Regression

Difference-based estimators for the error variance are popular since they do not require the estimation of the mean function. Unlike most existing difference-based estimators, new estimators proposed by Müller et al. (2003) and Tong and Wang (2005) achieved the asymptotic optimal rate as residual-based estimators. In this article, we study the relative errors of these difference-based estimator...

متن کامل

A New Nonparametric Regression for Longitudinal Data

In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...

متن کامل

Nonparametric Regression

is called the regression function (of Y on X). The basic goal in nonparametric regression is to construct an estimate f̂ of f0, from i.i.d. samples (x1, y1), . . . (xn, yn) ∈ R × R that have the same joint distribution as (X,Y ). We often call X the input, predictor, feature, etc., and Y the output, outcome, response, etc. Importantly, in nonparametric regression we do not assume a certain param...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dependence Modeling

سال: 2020

ISSN: 2300-2298

DOI: 10.1515/demo-2020-0013