Nonparametric regression estimation under mixing conditions
نویسندگان
چکیده
منابع مشابه
Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملEstimation of the Density and the Regression Function under Mixing Conditions Preprint M12/98
In this paper we derive rates of strong convergence for the kernel density estimator and for the Nadaraya-Watson estimator under the-mixing condition and under the condition of absolute regularity. A combination of an inequality of Bernstein type (Rio 1995) and an exponential inequality (cf. Fuk/Nagaev 1971) is the crucial tool for the proofs. Moreover, we consider the application of the main s...
متن کاملNonparametric Density Estimation via Diffusion Mixing
Suppose we are given empirical data and a prior density about the distribution of the data. We wish to construct a nonparametric density estimator that incorporates the prior information. We propose an estimator that allows for the incorporation of prior information in the density estimation procedure within a non-Bayesian framework. The prior density is mixed with the available empirical data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1990
ISSN: 0304-4149
DOI: 10.1016/0304-4149(90)90045-t