Nonparametric estimation of trend function for stochastic differential equations driven by a bifractional Brownian motion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Differential Equations Driven by a Fractional Brownian Motion

We study existence, uniqueness and regularity of some sto-chastic diierential equations driven by a fractional Brownian motion of any Hurst index H 2 (0; 1): 1. Introduction Fractional Brownian motion and other longgrange dependent processes are more and more studied because of their potential applications in several elds like telecommunications networks, nance markets, biology and so on The ma...

متن کامل

Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion

We study the ergodic properties of finite-dimensional systems of SDEs driven by non-degenerate additive fractional Brownian motion with arbitrary Hurst parameter H ∈ (0, 1). A general framework is constructed to make precise the notions of “invariant measure” and “stationary state” for such a system. We then prove under rather weak dissipativity conditions that such an SDE possesses a unique st...

متن کامل

Parametric Estimation for Linear Stochastic Delay Differential Equations Driven by Fractional Brownian Motion

Consider a linear stochastic differential equation dX(t) = (aX(t) + bX(t− 1))dt+ dW t , t ≥ 0 with time delay driven by a fractional Brownian motion {WH t , t ≥ 0}. We investigate the asymptotic properties of the maximum likelihood estimator of the parameter θ = (a, b).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Universitatis Sapientiae, Mathematica

سال: 2020

ISSN: 2066-7752

DOI: 10.2478/ausm-2020-0008