Nonparametric Estimation of Common Regressors for Similar Curve Data
نویسندگان
چکیده
منابع مشابه
Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملInstrumental Variables Estimation of Nonparametric Models with Discrete Endogenous Regressors
This paper presents new instrumental variables estimators for nonparametric models with discrete endogenous regressors. The model speci cation is su ciently general to include structural models, triangular simultaneous equations and certain models of measurement error. Restricting the analysis to discrete endogenous regressors is an integral component of the analysis since a similar model with ...
متن کاملNonparametric Estimation of Possibly Similar Densities
The University of Arizona is an equal opportunity, affirmative action institution. The University does not discriminate on the basis of race, color, religion, sex, national origin, age, disability , veteran status, or sexual orientation in its programs and activities. Summary In empirical settings it is sometimes necessary to estimate a set of densities which are thought to be of similar struct...
متن کاملNonparametric curve estimation by wavelet thresholding
In the modeling of biological phenomena, in living organisms whether the measurements are of blood pressure, enzyme levels, biomechanical movements or heartbeats, etc., one of the important aspects is time variation in the data. Thus, the recovery of a \smooth" regression or trend function from noisy time{varying sampled data becomes a problem of particular interest. Here we use non{linear wave...
متن کاملNonparametric estimation for dependent data
Nonparametric estimation for dependent observations has a long history in statistics. Rosenblatt [42] first studied density estimation for dependent data. Since then several authors have considered nonparametric estimation under various assumptions (notable early articles include Robinson [39] and Hart [29]). For example, Hall and Hart [25], Giraitis et al. [22], Mielniczuk [34] and Estevas and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1994
ISSN: 0090-5364
DOI: 10.1214/aos/1176325634