Nonparametric Bayesian approach to extrapolation problems in configuration interaction methods
نویسندگان
چکیده
منابع مشابه
A Nonparametric Bayesian Approach to Inverse Problems
of a known kernel k(ω, λ). The problem is difficult in part because the integral operator K : Γ 7→ G is smoothing, making the “inverse problem” K−1 : G 7→ Γ ill-posed in the sense that small changes in G may be associated with large changes in Γ. The most common approaches to solving Equation (1) for the unknown Γ begin by approximating this infinite-dimensional continuous problem with the fini...
متن کاملNonparametric Bayesian Methods
. Most of this book emphasizes frequentist methods, especially for nonparametric problems. However, there are Bayesian approaches to many nonparametric problems. In this chapter we present some of the most commonly used nonparametric Bayesian methods. These methods place priors on infinite dimensional spaces. The priors are based on certain stochastic processes called Dirichlet processes and Ga...
متن کاملNonparametric Bayesian Regression Methods
A common problem in statistics, and other disciplines , is to approximate adequately a function of several variables. In this paper we review some possible nonparametric Bayesian models with which we can perform this multiple regression problem. We shall also demonstrate how these basic models can be extended to allow the analysis of time series , both conventional and nancial, survival analysi...
متن کاملA Bayesian Nonparametric Approach to Multisensory Perception
We propose a Bayesian nonparametric model of multisensory perception based upon the Indian buffet process. The model includes a set of latent variables that learn multisensory features from unisensory data. The model is highly flexible because it makes few statistical assumptions. In particular, the number of latent multisensory features is not fixed a priori. Instead, this number is estimated ...
متن کاملNonparametric Regression Approach to Bayesian Estimation
Estimation of unknown parameters and functions involved in complex nonlinear econometric models is a very important issue. Existing estimation methods include generalised method of moments (GMM) by Hansen (1982) and others, efficient method of moments (EMM) by Gallant and Tauchen (1997), Markov chain Monte Carlo (MCMC) method by Chernozhukov and Hong (2003), and nonparametric simulated maximum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review C
سال: 2020
ISSN: 2469-9985,2469-9993
DOI: 10.1103/physrevc.102.024305