Nonmonotonic confining potential and eigenvalue density transition for generalized random matrix model

نویسندگان

چکیده

We consider several limiting cases of the joint probability distribution for a random matrix ensemble with an additional interaction term controlled by exponent $\gamma$ (called $\gamma$-ensembles). The effective potential, which is essentially single-particle confining potential equivalent $\gamma=1$ Muttalib-Borodin ensemble), crucial quantity defined in solution to Riemann-Hilbert problem associated $\gamma$-ensembles. It enables us numerically compute eigenvalue density $\gamma$-ensembles all $\gamma > 0$. show that one important effect two-particle parameter generate or enhance non-monotonicity potential. For suitable choices initial potentials, reducing can lead large turn leads significant changes eigenvalues. disordered conductor, this corresponds systematic decrease conductance increasing disorder. This suggests appropriate models be used as possible framework study effects disorder on conductances.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power-law eigenvalue density, scaling, and critical random-matrix ensembles.

We consider a class of rotationally invariant unitary random matrix ensembles where the eigenvalue density falls off as an inverse power law. Under a scaling appropriate for such power-law densities (different from the scaling required in Gaussian random matrix ensembles), we calculate exactly the two-level kernel that determines all eigenvalue correlations. We show that such ensembles belong t...

متن کامل

Eigenvalue Separation in Some Random Matrix Models

The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/(2N)1/2, where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secul...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

On the largest-eigenvalue process for generalized Wishart random matrices

Using a change-of-measure argument, we prove an equality in law between the process of largest eigenvalues in a generalized Wishart random-matrix process and a last-passage percolation process. This equality in law was conjectured by Borodin and Péché (2008).

متن کامل

A Density Matrix-based Algorithm for Solving Eigenvalue Problems

A new numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques, and takes its inspiration from the contour integration and density matrix representation in quantum mechanics. It will be shown that this new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physreve.103.042137