Nonlocal diffusion of smooth sets
نویسندگان
چکیده
We consider normal velocity of smooth sets evolving by the $ s- $fractional diffusion. prove that for small time, such is nearly proportional to mean curvature boundary initial set s\in [\frac{1}{2}, 1) while, (0, \frac{1}{2}) $, it fractional set. Our results show motion (fractional) flow can be approximated heat diffusion and a means harmonic extension sets.
منابع مشابه
$r$-fuzzy regular semi open sets in smooth topological spaces
In this paper, we introduce and study the concept of $r$-fuzzy regular semi open (closed) sets in smooth topological spaces. By using $r$-fuzzy regular semi open (closed) sets, we define a new fuzzy closure operator namely $r$-fuzzy regular semi interior (closure) operator. Also, we introduce fuzzy regular semi continuous and fuzzy regular semi irresolute mappings. Moreover, we investigate the ...
متن کاملNonlocal nonlinear advection-diffusion equations
We review some results about nonlocal advection-diffusion equations based on lower bounds for the fractional Laplacian. To Haim, with respect and admiration.
متن کاملAsymptotic Expansions for Nonlocal Diffusion
We study the asymptotic behavior for solutions to nonlocal diffusion models of the form ut = J ∗ u − u in the whole R with an initial condition u(x, 0) = u0(x). Under suitable hypotheses on J (involving its Fourier transform) and u0, it is proved an expansion of the form ∥∥u(u)− ∑ |α|≤k (−1)|α| α! ( ∫ u0(x)x dx ) ∂Kt ∥∥ Lq(Rd) ≤ Ct−A, where Kt is the regular part of the fundamental solution and...
متن کاملA Nonlocal Convection-diffusion Equation
In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J ∗u−u+G ∗ (f(u))− f(u) in R, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equatio...
متن کاملOn Nonlinear Nonlocal Diffusion Equations
This is a study of a class of nonlocal nonlinear diffusion equations (NNDEs). We present several new qualitative results for nonlocal Dirichlet problems. It is shown that solutions with positive initial data remain positive through time, even for nonlinear problems; in addition, we prove that solutions to these equations obey a strong maximum principle. A striking result shows that nonlocal sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics in engineering
سال: 2021
ISSN: ['2640-3501']
DOI: https://doi.org/10.3934/mine.2022009