Nonlocal and Mixed-Locality Multiscale Finite Element Methods
نویسندگان
چکیده
منابع مشابه
Mixed Finite Element Methods
A new mixed nite element method on totally distorted rectangular meshes is introduced with optimal error estimates for both pressure and velocity. This new mixed discretization ts the geometric shapes of the discontinuity of the rough coeecients and domain boundaries well. This new mixed method also enables us to derive the optimal error estimates and existence and uniqueness of Thomas's mixed ...
متن کاملMixed Finite Element Methods
Finite element methods in which two spaces are used to approximate two different variables receive the general denomination of mixed methods. In some cases, the second variable is introduced in the formulation of the problem because of its physical interest and it is usually related with some derivatives of the original variable. This is the case, for example, in the elasticity equations, where...
متن کاملA Multiscale Mortar Mixed Finite Element Method
We develop multiscale mortar mixed finite element discretizations for second order elliptic equations. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. The polynomial degree of the mortar and subdomain approximation spaces may differ; in fact, the mortar sp...
متن کاملExpanded Mixed Finite Element Methods
We develop a new mixed formulation for the numerical solution of second-order elliptic problems. This new formulation expands the standard mixed formulation in the sense that three variables are explicitly treated: the scalar unknown, its gradient, and its ux (the coeecient times the gradient). Based on this formulation, mixed nite element approximations of the second-order elliptic problems ar...
متن کاملMixed variational multiscale methods and multiscale finite elements
Mixed variational multiscale methods and multiscale finite elements
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Multiscale Modeling & Simulation
سال: 2018
ISSN: 1540-3459,1540-3467
DOI: 10.1137/16m1090351