Nonlinear variable selection algorithms for surrogate modeling
نویسندگان
چکیده
منابع مشابه
Variable Selection for Financial Modeling
In this paper, a global methodology for variable selection is presented. This methodology is optimizing the Nonparametric Noise Estimation (NNE) provided by Delta Test. The 3 steps of the methodology are Variable Selection (VS), Scaling and Projection. The methodology is applies to two examples: the Boston Housing database and a financial data set. It is shown that the proposed methodology prov...
متن کاملSandwich algorithms for Bayesian variable selection
Markov chain Monte Carlo (MCMC) algorithms have greatly facilitated the popularity of Bayesian variable selection and model averaging in problems with high-dimensional covariates where enumeration of the model space is infeasible. A variety of such algorithms have been proposed in the literature for sampling models from the posterior distribution in Bayesian variable selection. Ghosh and Clyde ...
متن کاملVariable Selection using MM Algorithms.
Variable selection is fundamental to high-dimensional statistical modeling. Many variable selection techniques may be implemented by maximum penalized likelihood using various penalty functions. Optimizing the penalized likelihood function is often challenging because it may be nondifferentiable and/or nonconcave. This article proposes a new class of algorithms for finding a maximizer of the pe...
متن کاملAlgorithms for variable length Markov chain modeling
UNLABELLED We present a general purpose implementation of variable length Markov models. Contrary to fixed order Markov models, these models are not restricted to a predefined uniform depth. Rather, by examining the training data, a model is constructed that fits higher order Markov dependencies where such contexts exist, while using lower order Markov dependencies elsewhere. As both theoretica...
متن کاملEvolutionary Model Type Selection for Global Surrogate Modeling
Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIChE Journal
سال: 2019
ISSN: 0001-1541,1547-5905
DOI: 10.1002/aic.16601