Nonlinear time series and principal component analyses: Potential diagnostic tools for COVID-19 auscultation
نویسندگان
چکیده
منابع مشابه
Time Series Modeling of Coronavirus (COVID-19) Spread in Iran
Various types of Coronaviruses are enveloped RNA viruses from the Corona-viridae family and part of the Coronavirinae subfamily. This family of viruses affects neurological, gastrointestinal, hepatic, and respiratory systems. Recently, a new memb-er of this family, named Covid-19, is moving around the world. The expansion of Covid-19 carries many risks, and its control requires strict planning ...
متن کاملSparse Principal Component Analysis for High Dimensional Multivariate Time Series
We study sparse principal component analysis (sparse PCA) for high dimensional multivariate vector autoregressive (VAR) time series. By treating the transition matrix as a nuisance parameter, we show that sparse PCA can be directly applied on analyzing multivariate time series as if the data are i.i.d. generated. Under a double asymptotic framework in which both the length of the sample period ...
متن کاملCompetitive principal component analysis for locally stationary time series
Abstract–A new unsupervised algorithm is proposed that performs competitive principal component analysis (PCA) of a time series. A set of expert PCA networks compete, through the Mixture of Experts (MOE) formalism, on the basis of their ability to reconstruct the original signal. The resulting network finds an optimal projection of the input onto a reduced dimensional space as a function of the...
متن کاملNonlinear Principal Component Analysis
A. Two quite different forms of nonlinear principal component analysis have been proposed in the literature. The first one is associated with the names of Guttman, Burt, Hayashi, Benzécri, McDonald, De Leeuw, Hill, Nishisato. We call itmultiple correspondence analysis. The second form has been discussed by Kruskal, Shepard, Roskam, Takane, Young, De Leeuw, Winsberg, Ramsay. We call it no...
متن کاملNonlinear principal component analysis
We study the extraction of nonlinear data models in high dimensional spaces with modi ed self organizing maps We present a general algorithm which maps low dimensional lattices into high dimensional data manifolds without violation of topology The approach is based on a new principle exploiting the speci c dynamical properties of the rst order phase tran sition induced by the noise of the data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos, Solitons & Fractals
سال: 2020
ISSN: 0960-0779
DOI: 10.1016/j.chaos.2020.110246