Nonlinear Process Monitoring Using Dynamic Sparse Kernel Classifier
نویسندگان
چکیده
منابع مشابه
Kernel Canonical Variate Analysis for Nonlinear Dynamic Process Monitoring
Effective monitoring of industrial processes provides many benefits. However, for dynamic processes with strong nonlinearity many existing techniques still cannot give satisfactory monitoring performance. This is evidenced by the well known Tennessee Eastman (TE) benchmark process, where some faults, e.g. Faults 3 and 9, have not been comfortably detected by almost all data-driven approaches pu...
متن کاملNonlinear process monitoring based on kernel dissimilarity analysis
To overcome the disadvantage of linear dissimilarity analysis (DISSIM) when monitoring nonlinear processes, a kernel dissimilarity analysis algorithm, termed KDISSIM here, is presented, which is the nonlinear version of DISSIM algorithm. A kernel dissimilarity index is introduced to quantitatively evaluate the differences between nonlinear data distribution structures, which can reflect the cha...
متن کاملA Sparse Nonlinear Classifier Design Using AUC Optimization
AUC (Area under the ROC curve) is an important performance measure for applications where the data is highly imbalanced. Learning to maximize AUC performance is thus an important research problem. Using a max-margin based surrogate loss function, AUC optimization problem can be approximated as a pairwise rankSVM learning problem. Batch learning methods for solving the kernelized version of this...
متن کاملMonitoring Nonlinear Profiles Using Wavelets
In many manufacturing processes, the quality of a product is characterized by a non-linear relationship between a dependent variable and one or more independent variables. Using nonlinear regression for monitoring nonlinear profiles have been proposed in the literature of profile monitoring which is faced with two problems 1) the distribution of regression coefficients in small samples is unkno...
متن کاملSparse inverse kernel Gaussian Process regression
Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process regression is a popular technique for modeling the input-output relations of a set of variables under the assumption that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process regression to lar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Engineering
سال: 2012
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2011.12.710