Nonlinear Process Monitoring Using Dynamic Sparse Kernel Classifier

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Canonical Variate Analysis for Nonlinear Dynamic Process Monitoring

Effective monitoring of industrial processes provides many benefits. However, for dynamic processes with strong nonlinearity many existing techniques still cannot give satisfactory monitoring performance. This is evidenced by the well known Tennessee Eastman (TE) benchmark process, where some faults, e.g. Faults 3 and 9, have not been comfortably detected by almost all data-driven approaches pu...

متن کامل

Nonlinear process monitoring based on kernel dissimilarity analysis

To overcome the disadvantage of linear dissimilarity analysis (DISSIM) when monitoring nonlinear processes, a kernel dissimilarity analysis algorithm, termed KDISSIM here, is presented, which is the nonlinear version of DISSIM algorithm. A kernel dissimilarity index is introduced to quantitatively evaluate the differences between nonlinear data distribution structures, which can reflect the cha...

متن کامل

A Sparse Nonlinear Classifier Design Using AUC Optimization

AUC (Area under the ROC curve) is an important performance measure for applications where the data is highly imbalanced. Learning to maximize AUC performance is thus an important research problem. Using a max-margin based surrogate loss function, AUC optimization problem can be approximated as a pairwise rankSVM learning problem. Batch learning methods for solving the kernelized version of this...

متن کامل

Monitoring Nonlinear Profiles Using Wavelets

In many manufacturing processes, the quality of a product is characterized by a non-linear relationship between a dependent variable and one or more independent variables. Using nonlinear regression for monitoring nonlinear profiles have been proposed in the literature of profile monitoring which is faced with two problems 1) the distribution of regression coefficients in small samples is unkno...

متن کامل

Sparse inverse kernel Gaussian Process regression

Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process regression is a popular technique for modeling the input-output relations of a set of variables under the assumption that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process regression to lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Engineering

سال: 2012

ISSN: 1877-7058

DOI: 10.1016/j.proeng.2011.12.710