Nonlinear Inequalities with Double Riesz Potentials
نویسندگان
چکیده
We investigate the nonnegative solutions to nonlinear integral inequality $u \ge I_{\alpha}\ast\big((I_\beta \ast u^p)u^q\big)$ a.e. in $\mathbb{R}^N$, where $\alpha, \beta\in (0,N)$, $p, q>0$ and $I_\alpha$, $I_\beta$ denote Riesz potentials of order $\alpha$ $\beta$ respectively. Our approach relies on a nonlocal positivity principle which allows us derive optimal ranges for parameters $\alpha$, $\beta$, $p$ $q$ describe existence nonexistence solution. The decay at infinity such is also discussed.
منابع مشابه
Reverse Triangle Inequalities for Riesz Potentials and Connections with Polarization
We study reverse triangle inequalities for Riesz potentials and their connection with polarization. This work generalizes inequalities for sup norms of products of polynomials, and reverse triangle inequalities for logarithmic potentials. The main tool used in the proofs is the representation for a power of the farthest distance function as a Riesz potential of a unit Borel measure. MSC 2010. P...
متن کاملThe Stein–weiss Type Inequalities for the B–riesz Potentials
We establish two inequalities of Stein-Weiss type for the Riesz potential operator Iα,γ (B−Riesz potential operator) generated by the Laplace-Bessel differential operator ΔB in the weighted Lebesgue spaces Lp,|x|β ,γ . We obtain necessary and sufficient conditions on the parameters for the boundedness of Iα,γ from the spaces Lp,|x|β ,γ to Lq,|x|−λ ,γ , and from the spaces L1,|x|β ,γ to the weak...
متن کاملRiesz Transform and Riesz Potentials for Dunkl Transform
Analogous of Riesz potentials and Riesz transforms are defined and studied for the Dunkl transform associated with a family of weighted functions that are invariant under a reflection group. The L boundedness of these operators is established in certain cases.
متن کاملOn Continuity of Generalized Riesz Potentials
This study establishes the theorem on continuity of generalized Riesz potentials with non-isotropic kernels depending on (β, γ)-distance. Mathematics Subject Classification: 31B10, 42B20, 47B06
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2021
ISSN: ['1572-929X', '0926-2601']
DOI: https://doi.org/10.1007/s11118-021-09962-9