Nonexistence of Smooth Levi-Flat Hypersurfaces in Complex Projective Spaces of Dimension ≥ 3

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ∂̄ - Cauchy problem and nonexistence of Lipschitz Levi - flat hypersurfaces in C Pn with n ≥ 3

In this paper we study the Cauchy–Riemann equation in complex projective spaces. Specifically, we use the modified weight function method to study the ∂̄-Neumann problem on pseudoconvex domains in these spaces. The solutions are used to study function theory on pseudoconvex domains via the ∂̄-Cauchy problem. We apply our results to prove nonexistence of Lipschitz Levi-flat hypersurfaces in comple...

متن کامل

Levi-flat Minimal Hypersurfaces in Two-dimensional Complex Space Forms

The purpose of this article is to classify the real hypersurfaces in complex space forms of dimension 2 that are both Levi-flat and minimal. The main results are as follows: When the curvature of the complex space form is nonzero, there is a 1-parameter family of such hypersurfaces. Specifically, for each one-parameter subgroup of the isometry group of the complex space form, there is an essent...

متن کامل

Microlocalization and Nonexistence of C 2 Levi-flat Hypersurfaces in Cp 2

Theorem. There exist no C Levi-flat real hypersurfaces in CP . This improves an earlier result of Siu [Si2] where C smoothness is required. For the nonexistence of Levi-flat hypersurfaces in CP with n ≥ 3, Lins-Neto [LN] first proved the nonexistence of real-analytic hypersurfaces in CP. Nonexistence of C Levi-flat hypersurfaces in CP was proved for n ≥ 3 by Siu [Si1]. It is proved in a recent ...

متن کامل

Estimates for the ∂̄-neumann Problem and Nonexistence of C Levi-flat Hypersurfaces in Cp*

Let Ω be a pseudoconvex domain with C2 boundary in CPn, n ≥ 2. We prove that the ∂̄-Neumann operator N exists for square-integrable forms on Ω. Furthermore, there exists a number 0 > 0 such that the operators N , ∂̄∗N , ∂̄N and the Bergman projection are regular in the Sobolev space W (Ω) for < 0. The ∂̄-Neumann operator is used to construct ∂̄-closed extension on Ω for forms on the boundary bΩ. Thi...

متن کامل

Mathematische Zeitschrift Estimates for the ∂̄-Neumann problem and nonexistence of C2 Levi-flat hypersurfaces in CP

Let be a pseudoconvex domain with C2 boundary in CP, n ≥ 2. We prove that the ∂̄-Neumann operator N exists for square-integrable forms on . Furthermore, there exists a number 0 > 0 such that the operators N , ∂̄∗N , ∂̄N and the Bergman projection are regular in the Sobolev space W ( ) for < 0. The ∂̄-Neumann operator is used to construct ∂̄-closed extension on for forms on the boundary b . This give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Mathematics

سال: 2000

ISSN: 0003-486X

DOI: 10.2307/121133