Nonexistence of Smooth Levi-Flat Hypersurfaces in Complex Projective Spaces of Dimension ≥ 3
نویسندگان
چکیده
منابع مشابه
The ∂̄ - Cauchy problem and nonexistence of Lipschitz Levi - flat hypersurfaces in C Pn with n ≥ 3
In this paper we study the Cauchy–Riemann equation in complex projective spaces. Specifically, we use the modified weight function method to study the ∂̄-Neumann problem on pseudoconvex domains in these spaces. The solutions are used to study function theory on pseudoconvex domains via the ∂̄-Cauchy problem. We apply our results to prove nonexistence of Lipschitz Levi-flat hypersurfaces in comple...
متن کاملLevi-flat Minimal Hypersurfaces in Two-dimensional Complex Space Forms
The purpose of this article is to classify the real hypersurfaces in complex space forms of dimension 2 that are both Levi-flat and minimal. The main results are as follows: When the curvature of the complex space form is nonzero, there is a 1-parameter family of such hypersurfaces. Specifically, for each one-parameter subgroup of the isometry group of the complex space form, there is an essent...
متن کاملMicrolocalization and Nonexistence of C 2 Levi-flat Hypersurfaces in Cp 2
Theorem. There exist no C Levi-flat real hypersurfaces in CP . This improves an earlier result of Siu [Si2] where C smoothness is required. For the nonexistence of Levi-flat hypersurfaces in CP with n ≥ 3, Lins-Neto [LN] first proved the nonexistence of real-analytic hypersurfaces in CP. Nonexistence of C Levi-flat hypersurfaces in CP was proved for n ≥ 3 by Siu [Si1]. It is proved in a recent ...
متن کاملEstimates for the ∂̄-neumann Problem and Nonexistence of C Levi-flat Hypersurfaces in Cp*
Let Ω be a pseudoconvex domain with C2 boundary in CPn, n ≥ 2. We prove that the ∂̄-Neumann operator N exists for square-integrable forms on Ω. Furthermore, there exists a number 0 > 0 such that the operators N , ∂̄∗N , ∂̄N and the Bergman projection are regular in the Sobolev space W (Ω) for < 0. The ∂̄-Neumann operator is used to construct ∂̄-closed extension on Ω for forms on the boundary bΩ. Thi...
متن کاملMathematische Zeitschrift Estimates for the ∂̄-Neumann problem and nonexistence of C2 Levi-flat hypersurfaces in CP
Let be a pseudoconvex domain with C2 boundary in CP, n ≥ 2. We prove that the ∂̄-Neumann operator N exists for square-integrable forms on . Furthermore, there exists a number 0 > 0 such that the operators N , ∂̄∗N , ∂̄N and the Bergman projection are regular in the Sobolev space W ( ) for < 0. The ∂̄-Neumann operator is used to construct ∂̄-closed extension on for forms on the boundary b . This give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematics
سال: 2000
ISSN: 0003-486X
DOI: 10.2307/121133