Nonempty intersection of longest paths in a graph with a small matching number

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection of Longest Paths in a Graph

In 1966, Gallai asked whether every connected graph has a vertex that is common to all its longest paths. The answer to this question is negative. We prove that the answer is positive for outerplanar graphs. Another related question was raised in 1995 at the British Combinatorial Conference: Do any three longest paths in a connected graph have a vertex in common? We prove that, in a connected g...

متن کامل

Nonempty intersection of longest paths in series-parallel graphs

In 1966 Gallai asked whether all longest paths in a connected graph have nonempty intersection. This is not true in general and various counterexamples have been found. However, the answer to Gallai’s question is positive for several well-known classes of graphs, as for instance connected outerplanar graphs, connected split graphs, and 2-trees. A graph is series-parallel if it does not contain ...

متن کامل

On Computing Longest Paths in Small Graph Classes

The longest path problem is to find a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, few graph classes are known to be solved efficiently for the longest path problem. For a tree, a simple linear time algorithm for the longest path problem is known. We first generalize the algorithm, and show that t...

متن کامل

Uniform Number of a Graph

We introduce the notion of uniform number of a graph. The  uniform number of a connected graph $G$ is the least cardinality of a nonempty subset $M$ of the vertex set of $G$ for which the function $f_M: M^crightarrow mathcal{P}(X) - {emptyset}$ defined as $f_M(x) = {D(x, y): y in M}$ is a constant function, where $D(x, y)$ is the detour distance between $x$ and $y$ in $G$ and $mathcal{P}(X)$ ...

متن کامل

A note on longest paths in circular arc graph

As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335–341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311–317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2015

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-015-0193-2