منابع مشابه
Convex Hull Properties of Harmonic Maps
In 1975, Yau [Y] proved, by way of a gradient estimate, that a complete manifold M with non-negative Ricci curvature must satisfy the strong Liouville property for harmonic functions. The strong Liouville property (Liouville property) asserts that any positive (bounded) harmonic function defined on M must be identically constant. In 1980, Cheng [C] generalized the gradient estimate to harmonic ...
متن کاملSuperrigidity, Generalized Harmonic Maps and Uniformly Convex Spaces
We prove several superrigidity results for isometric actions on Busemann non-positively curved uniformly convex metric spaces. In particular we generalize some recent theorems of N. Monod on uniform and certain non-uniform irreducible lattices in products of locally compact groups, and we give a proof of an unpublished result on commensurability superrigidity due to G.A. Margulis. The proofs re...
متن کاملHarmonic Maps and Biharmonic Maps
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1993
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-66-1-9-22