Nonautonomous semilinear Wentzell problems in fractal domains
نویسندگان
چکیده
Abstract We study a nonautonomous semilinear parabolic problem with dynamical boundary condition in an irregular domain fractal boundary. Local existence, uniqueness and regularity results for the mild solution are established via family of evolution operators. A sufficient on initial datum global existence is given.
منابع مشابه
Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains
Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type ∆u − N(x, u) = F (x), equipped with Dirichlet and Neumann boundary conditions.
متن کاملSemilinear Elliptic Boundary-value Problems on Bounded Multiconnected Domains
A semilinear elliptic boundary-value problem on bounded multiconnected domains is studied. The authors prove that under suitable conditions, the problem may have no solutions in certain cases and many have one or two nonnegative solutions in some other cases. The radial solutions were also studied in annular domains.
متن کاملApproximate Controllability of Semilinear Nonautonomous Systems in Hilbert Spaces
In this paper we give a necessary and sufficient conditions for approximate controllability of a wide class of semilinear nonautonomous systems in Hilbert spaces. This is done by employing skew-product semi-flows technique. As an application we prove the approximate controllability of a broad class of nonautonomous semilinear reaction diffusion equations which includes the semilinear heat equat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Evolution Equations
سال: 2022
ISSN: ['1424-3199', '1424-3202']
DOI: https://doi.org/10.1007/s00028-022-00846-y