Non-Stationary Fractal Interpolation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Fractal Shape Interpolation

Interpolation of two-dimensional shapes described by iterated function systems is explored. Iterated function systems define shapes using self-transformations, and interpolation of these shapes requires interpolation of these transformations. Polar decomposition is used to avoid singular intermediate transformations and to better simulate articulated motion. Unlike some other representations, s...

متن کامل

Smooth Fractal Interpolation

Fractal methodology provides a general frame for the understanding of real-world phenomena. In particular, the classical methods of real-data interpolation can be generalized by means of fractal techniques. In this paper, we describe a procedure for the construction of smooth fractal functions, with the help of Hermite osculatory polynomials. As a consequence of the process, we generalize any s...

متن کامل

Super Fractal Interpolation Functions

Abstract: In the present work, the notion of Super Fractal Interpolation Function (SFIF) is introduced for finer simulation of the objects of nature or outcomes of scientific experiments that reveal one or more structures embedded in to another. In the construction of SFIF, an IFS is chosen from a pool of several IFSs at each level of iteration leading to implementation of the desired randomnes...

متن کامل

Closed Fractal Interpolation Surfaces

Based on the construction of bivariate fractal interpolation surfaces, we introduce closed spherical fractal interpolation surfaces. The interpolation takes place in spherical coordinates and with the transformation to Cartesian coordinates a closed surface arises. We give conditions for this construction to be valid and state some useful relations about the Hausdorff and the Box counting dimen...

متن کامل

Polynomial generation and quasi-interpolation in stationary non-uniform subdivision

We study the necessary and sufficient conditions for the generation of polynomials by stationary subdivision schemes, and we show how to derive appropriate quasiinterpolation rules that have the optimal approximation order. We show that these conditions hold in the context of non-uniform subdivision as well, and we demonstrate how they can be used for the construction of stationary non-uniform ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7080666