Non-Stationary Dynamic Factor Models for Large Datasets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized dynamic semi-parametric factor models for high-dimensional non-stationary time series

SONG SONG†, WOLFGANG K. HÄRDLE‡,§ AND YA’ACOV RITOV‡,§ †Department of Mathematics, University of Alabama, 318B Gordon Palmer Hall, Tuscaloosa, AL 35487, USA. E-mail: [email protected] ‡School of Business and Economics, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099, Berlin, Germany. E-mail: [email protected], [email protected] §Department of Statistics, The Hebrew ...

متن کامل

Stationary Process Approximation for the Analysis of Large Spatial Datasets

In a spatial data analysis problem, usually we build a hierarchical model with spatial structure described though random effects using a Gaussian process. If the sample size is very large, exact likelihood based inference becomes unstable and, eventually, infeasible since it involves computing quadratic forms and determinants associate with a large covariance matrix. If we wish to fit a Bayesia...

متن کامل

Dynamic Factor Models of Large Dimensions A Comparison of Estimation Methods for Dynamic Factor Models of Large Dimensions

The estimation of dynamic factor models for large sets of variables has attracted considerable attention recently, due to the increased availability of large datasets. In this paper we propose a new methodology for estimating factors from large datasets based on state space models, discuss its theoretical properties and compare its performance with that of two alternative estimation approaches ...

متن کامل

Dynamic Memory Model for Non-Stationary Optimization

Real-world problems are often nonstationary and can cause cyclic, repetitive patterns in the search landscape. For this class of problems, we introduce a new GA with dynamic explicit memory, which showed superior performance compared to a classic GA and a previously introduced memorybased GA for two dynamic benchmark problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2016

ISSN: 1556-5068

DOI: 10.2139/ssrn.2741739